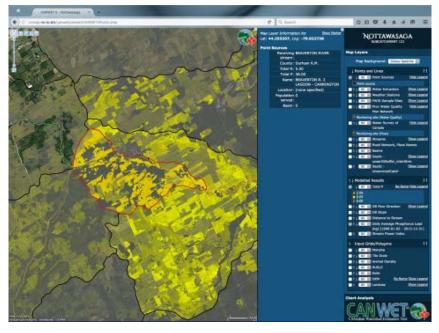
INFORMATION SYSTEMS

Water Resources

CANWET™ - CANadian Watershed Evaluation Tool


CANWET[™] is an open data, **urban and rural**, platform (and developed by GREENLAND[®] since 2003) for cumulative effects analysis and watershed management. <u>CANWET[™] is</u>

now "Powered by SWAT" and includes open source GIS-software designed to inform decision making around watershed management; integrated water supply and wastewater treatment infrastructure; urban drainage control; and, climate change adaptation. The platform's ability to accurately calculate hourly water balance, nutrients, erosion sediment, bacteria, water temperatures, dissolved oxygen and other parameters from GIS data, enables CANWET[™] to serve as a powerful decision support system. It also includes science-based climate change impact and mitigative Best Management Practices & Low Impact Development analytics, as well as "automated" modelling data calibration and verification capabilities.

In 2006, Version '2' was completed with timely support from the Province of Ontario (Canada) to develop the award-winning "Lake Simcoe Protection Plan". Further tool updates were then used for similar Assimilative Capacity; Watershed Planning; Master Drainage Planning; Water and Wastewater Infrastructure Planning; and, Source Water Protection projects in Canada. <u>In 2016</u>, CANWET[™] was recognized by Environment Canada and Climate Change (ECCC) and International Joint Commission (IJC) for use as a future Great Lakes Basin management platform and because of its **climate change impact capabilities**.

In 2018, GREENLAND[®] initiated a <u>4-year software collaboration</u> with the University of Guelph. The first project included further developing <u>CANWET[™]</u> with Artificial Intelligence (machine learning) features, as well as maintaining current capabilities and adding new / proven-science predictive modelling functions available for the "SWAT" analytical engine.

The Green Future

University of Guelph and Greenland Consulting research team develop unique web-based watershed management tool

Assistant Professor Prasad Daggupati and Greenland Consulting are using SOSCIP's Cloud Analytics Platform to build a web-based tool that will help improve the health of aquatic systems.

Potential beneficiaries include the Lake Erie basin, which is experiencing an increasing frequency of phosphorus-induced algae blooms. The team will build a hydrological modelling system capable of simulating large watersheds at high resolution to identify pollutant sources. The research tool could be instrumental in supporting the Ontario and Canadian governments in achieving their commitments to a 40 per cent reduction in phosphorus in Lake Erie by 2025.

"The system will make this information accessible to everyone from government to urban planners and researchers," says Professor Daggupati, of Guelph's School of Engineering. "Users will be able to see spatially what is happening and take appropriate actions." The research will enable researchers and government to reduce the harmful effects that algal blooms have on water quality, fish, and wildlife populations in and surrounding Lake Erie.

Academic institute: University of Guelph Academic lead: Prasad Daggupati Post-doctoral fellow: Masood Zamani

Technology

Protection

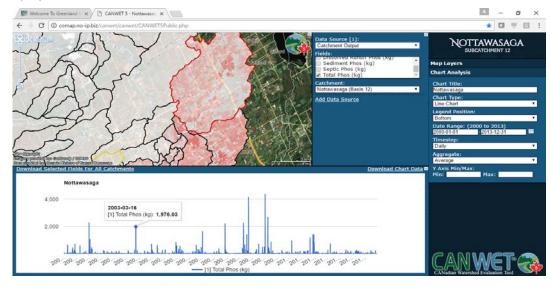
Building Data Sustainable Science Skills Living

SOSCIP: FAST FORWARD

WATER RESOURCES / MUNICIPAL INFRASTRUCTURE

Cumulative Effects Management

Development of the 'CANWET-5' (Internet) Decision Support System


Clients: Ontario Ministry of Environment and Climate Change (MOECC) and Environment and Climate Change Canada (ECCC) Location: Great Lakes Basin

In 2010, GREENLAND® was retained by the Province of Ontario (Canada) to provide support for landmark assimilation capacity studies about the Nottawasaga River and Lake Simcoe Basins. Calibrated and verified CANWET[™] models were prepared at the subwatershed level to quantify water balance conditions, as well as nutrient, sediment and contaminant loads from all point (i.e. stormwater management facilities and sewage treatment plants) and non-point sources. The modelling scenarios were used to assess the potential for load reductions associated with the implementation of Best Management Practices (BMPs) and basin water quality "targets". The modelling results were subsequently used as input to hydrodynamic models and developed separately for Lake Simcoe and South Georgian Bay (Lake Huron). The results also contributed to the development of the Lake Simcoe Protection Plan and Lake Simcoe Phosphorus Reduction Strategy.

In 2015, <u>GREENLAND® and University of Waterloo</u> affiliated partners were retained to update the CANWET[™] model of the Nottawasaga River Basin and develop the "first-ever" web-accessible platform in order to inform infrastructure, planning and stewardship decisions. This would also enable long-term continuous consideration of cumulative effects and climate change. The Internet decision support system called <u>'CANWET-5' was completed in March 2017</u> and included the development of a new predictive module for river habitat health and used to assess instream target load reductions and locations. GREENLAND® updated other core CANWET[™] sciencebased algorithms to develop this new predictive tool for evaluating potential for river

ecosystem health impairments. The model incorporated simulated water quality conditions from calibrated sub-watershed areas with observed reach physical and geomorphic characteristics. The river habitat health indicator in CANWET-5 was then used to evaluate target nutrient load reductions with a new climate change impact methodology (within CANWET-5) and used to assess river system segments found to be impaired. The river habitat health methodology is transferable to any Canadian watershed and can be customized for use in other regions around the globe. A screenshot from the Internet CANWET-5 platform is shown below. CANWET-5 project related videos are also available via the Internet.

CANWET-5 Nottawasaga River Platform: Historical Phosphorus Loads from Priority Subwatersheds (2017)

INFORMATION SYSTEMS

Great Lakes - Nutrient Loading Policy Evaluation

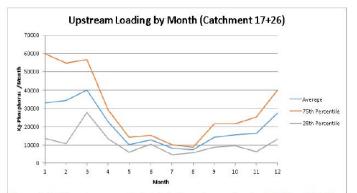
Evaluation of Policy Options to Achieve Nutrient Reductions from Canadian Sources to Lake Erie *Client: Environment Canada and Climate Change*

In 2015, GREENLAND® in association with faculty from the University of Guelph, were retained by Environment and Climate Change Canada, and an inter-agency Steering Committee and Technical Committee, to undertake the study *"Evaluation of Policy Options to Achieve Phosphorus / Nutrient Reductions from Canadian Sources to Lake Erie"*. This initial study established an extensive list of the most viable policy options. Subsequent evaluations then examined the effectiveness of all policy options on the basis of achieving nutrient load reduction targets; sustainable cost effectiveness; potential impact to the economy; social acceptance; and, efficiency of implementation. The study also considered what initiatives were in place and recommended how gaps might be filled.

<u>The main project objective was to determine what "best suite of policy actions" could achieve the greatest</u> nutrient load reductions, while also being the most effective in terms of cost, time and social acceptance.

A unique modelling approach was used with the "<u>**CAN**</u>adian <u>**W**</u>atershed <u>**E**</u>valuation <u>**T**</u>ool" ("<u>**CANWET**</u>") as means of quantifying and better understanding the origin / timing of phosphorus loads reaching Lake St.

Clair and draining from the Thames River Watershed. The Thames River basin is located in Southern Ontario and has a drainage area of 3,432 km². The watershed is home to almost 500,000 people and supports a diverse economy – including, extensive agriculture operations, supporting businesses and other industries. The mixed urban-rural (land use) grid CANWET model provided a means of testing policy options to determine the likely outcome in terms of load reductions and water quality. This approach was used as a means of demonstrating how policy options might be evaluated or applied over the larger Ontario portion of the Lake Erie Basin and to the other Great Lakes, as the Thames River watershed represents only a portion of the overall contributing source area to the Great Lakes.


igure 7-1 Catchment / reach index map with monitoring stations

The Thames River Watershed was modeled as a series of 33 subwatersheds that were simulated and routed on a continuous daily time step for the period from 2008 through 2013. The simulation also used a series of geographic and meteorological information to estimate sediment and nutrient loads from sources and processes within each contributing catchment.

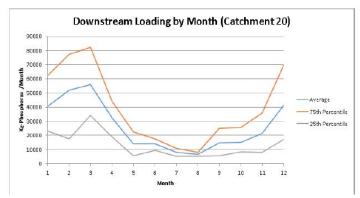

The routing routine in CANWET computes daily accumulated flow and load (and associated concentrations) from upstream reaches plus the current catchment. Loads from upstream contributing reaches are then decayed according to an exponential decay equation based on a calibrated decay factor, computed travel time and water column depth for each reach and day of the simulation. Any point source discharges are added at the outlet of a given reach. The simulated loads, flows and concentrations represent the stream discharge condition at the outlet of the reach segment.

Table 8-1 Summary of Watershed Model Scenarios

	Non-Prioritized	Spatially / Temporally Prioritized
Baseline Voluntary Standard Outreach and Cost Share Programs (existing level of resources)	Scenario 1 Baseline calibrated model	Scenario 2 Prioritze BMPs to catchment- source-seasons with higher delivered loads. Moderate application rate
Voluntary with Enhanced Outreach ¹	Scenario 3 Uniform BMP application across watershed. Higher application rate due to enhanced cutreach	Scenario 4 BMPs prioritized to higher loading catchment-source-seasons. Enhanced outreach increases application rate and BMP efficiency
Regulated and Enforced with Enhanced Outreach	Scenario 5 Enforced regulated approach. Outreach and compliance incentives across all catchments and sources. Enhanced outreach to prioritized cathement-source-seasons. This could involve phased implementation – (ex. address manure spreading in phase 1, WWTP optimization in phase 2, etc.) – or directing enhanced outreach to higher loading sources at a landscape scale.	

A series of watershed modeling scenarios were developed for the Thames River system to evaluate phosphorus loading and in-stream concentrations. CANWET modelling scenarios were representative of policy mechanisms too.

Delivered catchment-source-season loads per area (from the CANWET results) were ranked from 1% (highest delivered load per area) to 100% (lowest delivered load per hectare). The models also incorporated a new "evolutionary solver" that iteratively attempted different combinations of prioritization on each source type and in an attempt to achieve the 40% load reduction target for the lowest cost. The more area BMPs are applied to or the greater number of septic system and/or WWTP upgrades, the greater the cost and load reduction. If the CANWET model was not able to achieve a solution, the target was manually reduced until the solver was able to find a solution. The recommended policy option then involved developing an enhanced outreach program to inform and educate watershed stakeholders as well as providing technical support and financial incentives.

At the completion of the study, the Inter-agency Steering Committee had questions about how <u>climate</u> <u>change</u> might impact the effectiveness of policy on nutrient load reduction. GREENLAND® completed another study in <u>2016-17</u> (and using the same CANWET models) to evaluate climate change impacts on policy effectiveness in achieving nutrient reductions from the initial Thames River Watershed analyses.

The climate change scenarios used in this other study followed the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Representative Concentration Pathway 8.5 (RCP 8.5) scenario.

A total of twelve (12) CANWET scenario runs were undertaken and summarized in the following table.

Model Calibration Period	Simulation Period	Simulation Period 2020-2049
2008-2013	1986-2005 (Baseline)	(Composite Climate Change)
Calibrated model under recent conditions	Baseline historical model	AR5 RCP8.5 using 4 driving climate models
Calibrated model with Policy Option 5 BMPs	Baseline historical model with Policy Option 5 BMPs	AR5 RCP8.5 using 4 driving climate models with Policy Option 5 BMPs

Summary of model scenarios

The final recommended policy option considered the use of approaches like one-on-one consultations and site specific planning, in addition to <u>prioritizing BMPs seasonally and spatially</u> to areas that contribute higher amounts of delivered nutrient load.

It was also concluded that decision making around use of BMPs must consider provision of <u>"co-benefits"</u>. For example, practices that reduce soil and nutrient loss may also reduce greenhouse gas emissions; retain / build soil organic content; reducing flood potential; reduce irrigation needs; increase bio-diversity; and improve habitat. All of these ecological goods and services will be best achieved if practices are designed to deliver under the projected climate change conditions.

Finally, in late 2017, another related study was initiated by Environment Canada and Climate Change. GREENLAND® was retained so that CANWET and another proprietary tool (THREATS) could be used.